

FPGA Enhanced Digital Beamsteering Phased Array

Sponsor: L3Harris

Team 311: Katheryn Potemken, William Snyder, Andrew Cayson, Tiernen Pan, and Christian Balos

What is a Phased Array?

Why do we need Beamsteering?

- The motivation for beamsteering is the need for higher data transmission rates.
- Beamsteering allows us to transmit a higher quality signal to receivers.
 - Leading to fewer errors in the transmission of data.
- We do not need to increase the transmitting power in order to achieve the higher quality signal.
 - By focusing the main lobe of the transmission radiation, we are also attenuating the side lobes of the radiation pattern.

What is Beamsteering?

• Uses an array of antennas that differ by a phase to constructively and destructively interfere such that the majority of the constructive interference occurs in the direction that we want the main lobe to point.

How are we going to implement Beamsteering?

Made for electrical components

Booster Pack for control

Radiation Pattern Comparison for Antenna Spacing

Phased Angle Beam Relation

Build Options System Block Diagram **Active Array Digitized Subarray** Digital Array Voltage Supply Analog Beamformer Analog Upconverter Receiver Waveform Generator and A/D Waveform Receivers Generator(s) and A/D **FPGA** Digital Processor Backend Controller Processor & Antenna Upconverter Controller Proc. & Controller Four-channel DDS Upconverter Computer Interface (GUI) MCU and Boosterpack LCD (a) $\phi = \beta d \times \sin\theta$ (b) $\varphi=0^{\circ}$ $\phi = 30^{\circ}$ φ=90° φ=60° Final Preliminary Design PVC Junction box Mounting Brackets